NUSIMEP-7: uranium isotope amount ratios in uranium particles.
نویسندگان
چکیده
The Institute for Reference Materials and Measurements (IRMM) has extensive experience in the development of isotopic reference materials and the organization of interlaboratory comparisons (ILC) for nuclear measurements in compliance with the respective international guidelines (ISO Guide 34:2009 and ISO/IEC 17043:2010). The IRMM Nuclear Signatures Interlaboratory Measurement Evaluation Program (NUSIMEP) is an external quality control program with the objective of providing materials for measurements of trace amounts of nuclear materials in environmental matrices. Measurements of the isotopic ratios of the elements uranium and plutonium in small amounts, typical of those found in environmental samples, are required for nuclear safeguards and security, for the control of environmental contamination and for the detection of nuclear proliferation. The measurement results of participants in NUSIMEP are evaluated according to international guidelines in comparison to independent external certified reference values with demonstrated metrological traceability and uncertainty. NUSIMEP-7 focused on measurements of uranium isotope amount ratios in uranium particles aiming to support European Safeguards Directorate General for Energy (DG ENER), the International Atomic Energy Agency's (IAEA) network of analytical laboratories for environmental sampling (NWAL) and laboratories in the field of particle analysis. Each participant was provided two certified test samples: one with single and one with double isotopic enrichment. These NUSIMEP test samples were prepared by controlled hydrolysis of certified uranium hexafluoride in a specially designed aerosol deposition chamber at IRMM. Laboratories participating in NUSIMEP-7 received the test samples of uranium particles on two graphite disks with undisclosed isotopic ratio values n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U). The uranium isotope ratios had to be measured using their routine analytical procedures. Measurement of the major ratio n((235)U)/n((238)U) was obligatory; measurement of the minor ratios n((234)U)/n((238)U) and n((236)U)/n((238)U) was optional. Of the twenty-four institutes that registered for NUSIMEP-7, 17 have reported their results achieved by different analytical methods. The results of NUSIMEP-7 confirm the capability of laboratories in measuring n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in uranium particles of the size below 1 μm diameter. Furthermore, they underpin the recent advances in instrumental techniques in the field of particle analysis. In addition, feedback from the measurement communities from nuclear safeguards, nuclear security and earth sciences was collected in view of identifying future needs for NUSIMEP interlaboratory comparisons.
منابع مشابه
Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS
Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. 'point-by-point', 'integration' and 'line...
متن کاملUranium in Urine: Quantification and Isotope Ratio Determination
While the quantification of uranium is therefore demanding in the diluted sample, uranium isotope ratio determination requires the ultimate in instrumental performance as good precisions for large isotope ratios are required at low concentrations. The abundances of the three naturally occurring U isotopes are shown in Table 1, together with the 234U/238U and 235U/238U ratios. The nuclear indust...
متن کاملInvestigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production
The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n(34S)/n(32S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample set...
متن کاملUranium in Urine: Quantification and Isotope Ratio Determination
The second point makes the matrix matching of standards to samples for direct analysis impossible and, in order to normalize all samples to a similar matrix, the analysis of a diluted (or digested) solution is preferable. High instrumental sensitivity is then required to reliably measure the resulting single digit pg g-1 uranium concentrations. While the quantification of uranium is therefore d...
متن کاملIsotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples{
Environmental monitoring of actinides and evaluation of the contamination source (nuclear weapons tests, nuclear power plant and nuclear reprocessing plant accidents, etc.) requires precise and accurate isotopic analysis of actinides, especially uranium and plutonium. Double-focusing sector-field inductively coupled plasma mass spectrometry (ICP-SFMS) using a low-flow microconcentric nebulizer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental radioactivity
دوره 125 شماره
صفحات -
تاریخ انتشار 2013